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Rigorous Analysis of the Scattering of Surface
Waves in an Abruptly Ended

Slab Dielectric Waveguide
PHILIPPE GELIN, MICHEL PETENZI, AND JACQUES CITERNE

Abszmec-Tlte reflection and the scattering properties of even TE and

TM surface waveg fncident in an abruptly ended dielectric slab waveguide

are analyzed. ‘he diacontfmdty fs regarded as a junction between two open

wavegukfea namely tbe dielectric slab waveguide and the free space

waveguide. ‘l%e boundary conditions acting togethes with the mtkgom@

provide sfngufar coupled integraf eqmtions on the dfsaete and the con-

tinuous wave ampfitndes at the discontinuity. M sfngufar coupled

integraf equations with Cauehy kernefs and Mnite limits of integration

are solved by iteration via the Nemmm series. Numerkaf resufts are

presented for the reflectivity of the even TEO and TMO fundamental

MOC@ @@*r WW tfwti mode eonvemkm on even TE2 and TM2 fn a
Sfd) WfleretWOgufded modes can pmps@te. Refketfvity and mode COllVtX-

sion of Mgher order excitations are also investigated.

I. INTRODUCTION

T HE DIFFICULTY of the studies relating to open

waveguide discontinuities led many authors to con-

centrate on rather elementary problems of dielectric slab

waveguide. Such problems are idealization of more realis-

tic situations that occur at a transverse discontinuity in a

planar waveguide in centimeter, millimeter, or optical

circuitry design.

We would have wished here to formulate rigorously the

resonant conditions of confined modes inside a lossless

dielectric resonator [1], however, owing to the complexity

of this problem which remains unsolved up to date, to our

knowledge, we shall consider in the present paper trans-

verse discontinuities in’ dielectric slabs, rather than in

circular dielectric rods.

The methods outlined in pioneer works on abrupt junc-

tions between one surface waves guiding structure to

another are, in essence, similar to those used for junctions

between more conventional closed waveguides [2]. They

are to be adapted to treat open structures where the

complete set of eigenmodes includes both discrete and

continuous waves.

Most of the theoretical analyses reported previously

were restricted to small discontinuities. Under that basic

assumption, either the backward radiated waves can be

neglected as in [3] or the continuum keeps the same

description on both sides of the discontinuity as in [4].

The problem of arbitrarily large steps under monomode

or multimode excitations has been also investigated
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Fig. 1. Abruptly ended dielectric slab waveguide configuration.

by several authors. For computational convenience,

Mahmoud and Beal [5] transformed the continuous de-

scription of the radiation modes in a discrete one by

expanding the coupling functions in terms of a complete

set of normalized Laguerre polynomials on the range of

the continuous transverse wavenumber. Very recently, two

variational approaches have been applied successfully.

Using the aforementioned discrete description of the con-

tinuum, Morishita et al. [6] defined the mean square error

of the transverse fields components at the discontinuity as

a functional and solved the stationary associated boundary

value problem. Rozzi [7] solved the integral equation

given in [8] on the transverse fields components at the

discontinuity interface ~a the Ritz- Galerkin method; the

normalized Laguerre polynomials are still used but for

discretizing the modal fields components in each slab

waveguide cross section.

This paper deals with an other rigorous approach of the

surface wave scattering at a transverse discontinuity in a

lossless dielectric slab waveguide. It consists of deriving

coupled singular integral equations on discrete and con-

tinuous wave amplitudes interfering in the total electro-

magnetic fields which are matched at the discontinuity

interface. This system of singular integral equations, where

the integrals are taken in the sense of the Cauchy prin-

cipal values, is solved by integration using the standard

Neuman series which are found rapidly converging.

The method has already been succinctly described

elsewhere for arbitrarily large steps [9] but without com-

putational details. In the present paper, we are going to

discuss an open-type discontinuity problem of great inter-

est in resonator design, i.e., the diffraction and the reflec-

tion of surface waves at abruptly ended slab dielectric
waveguide (Fig. 1).

Such a problem is also of great importance in other area

of activity such as in solid-state heterojunction laser de-

vices [10] and in millimeter wave antenna applications
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[11]. For a laser cavity, the reflection and the diffraction

of surface waves at the end facet are crucial parameters

for determining both its oscillation condition and its out-

put coupling radiation in free space. For dielectric slab

antennas, the usual parameters are the terminal imped-

ance and the near as well as far scattered fields.

The problem we discuss in this paper has thus already

been investigated in the aforementioned areas by several

authors who proposed numerical results under reasonable

approximations. Most of them used the transverse integral

equation method associated with a final variational for-

mulation on quantities which have a stationary property.

These quantities are the terminal and transfert imped-

ances in [12] and [13] whereas in [14] and in [15] they are

the reflection coefficients. This paper can be considered as

extension of Rozzi works recently published [16].

The technique we are going to describe gives an exact

solution of this basic problem and the computational

effort required is &inimum. For brevity’s sake, it will be

restricted to even TE excitations. The TM excitations is

briefly treated in Appendix.

II. ANALYSIS OF THE ABRUPTLY ENDED SLAB

DISCONTINUIm

A. Formulation of the Problem

On the left-hand side of the interface discontinuity

z = O, the discrete and the continuous parts of the spec-

trum of the slab dielectric waveguide are derived using

Marcuse notations [3]. On the right-hand side of the

interface z = O, the spectrum is only continuous; its de-

scription is deduced from the slab continuous spectrum by

taking the limit of either a zero thickness (d~O) or a unit

perrnittivity ((, ~ 1). For simplicity only the even TE

waves with transverse fields EY and HX are considered.

Continuity of these transverse fields at the interface z = O

is expressed as

E;(p)

}
dp

H;(P)

n=0,2,4,. . . . (1)

The field on the left-hand side of (1) is a superposition

of the even incident TEO mode (superscript i), of the

reflected even discrete TE~ (n= 0,2,4,. . . ) and of the
reflected even continuous TE modes (superscript r). The

constants a. (n= 0,2,4,. . . ) are the amplitudes of the

reflected discrete modes, while the coefficients q’(p) rep-

resent the amplitudes of the reflected continuous modes.

The forward scattered field on the right-hand side of (1) is

a superposition of the transmitted even TE continuous

modes with the amplitudes q‘( p). In the following, we

denote by & (n= 0,2,4, ” ..) and /3(p) the phase constant

of the even discrete TE. modes and of the even continu-

ous TE modes, respectively; lastly, p denotes the trans-

verse wavenumber of the slab continuous modes outside

the dielectric medium.

By ‘using orthogonality and by operating elementary

substitutions, we can take out from (l), the amplitudes

q’(P), a. and q’(p), the expressions of which are

1 IIMP)I~~(p)= —
(J

~E;,O. E;(p). dx
WOP [P. +@(p)] 2B0 o

+~mdp’~@~’(p’)[80-P(p’)]~;(p’)E; (p)d~
o 0

+ x (/30–B.)”a.~mEJ,.Ej(p)dx),n=2,4,. . . (2)

{}

/+

(1
a. 1 lfl(P)l

2upoP4’(P) = — “ (Pn\

~mdp)~m~’(p)[{;)}-fl,p,]

{}
E’

.E;(p’).
Y,n

E;(p) ‘x’
n=0,2,4,. . . (3)

where P is the real power flow in the positive z direction

(per unit length of y) for any discrete propagating mode.

The continuous modes, which can be either propagating

or evanescent have their complex power flow !? related to

P by the following formula:

g_ P(P) p

ILNP)I “
(4)

Equations (2) and (3) are the coupled integral equations

that relate the unknown functions q’(p), a., and q’(p).
These equations have to be solved for treating rigorously

the abruptly ended dielectric slab discontinuity problem.

Beside the unknown functions q’(p), a., and q’(p), all

other quantities in (2) and (3) are known since they refer

to the slab and to the free space TE modal fields.

B. Closed Form of the Coupled Integral Equatiow

Using the analytical expressions of slab and free space

TE modal fields components (see [3]), we can give below

the closed form of the coupled integral (2) and (3)

1P(P)
q’(p)= & [f?. +B(P)I

“{2Bo@o(p)+~mqr(p’) [@o-B(p’)] @’(p’, p)dp’
o

+~(flo-&)”a~”G~(P)), n=2,4,”.. (5)

Jli\

“[{J)}-p(p’)]

“{ }Gn(p’)
alp’,

F(p, p’)
n=0,2,4,. . . (6)
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where

G.(p) =2k:(C, –l)”Au” B:(p) cos Kfid

(y~cospd–psin pd) (7)

(~; -P2)(Y:+P2)

F(p’, p) =IIB:(p)B:(p’)[ D:(p’) +D:”(p’)] a(p–p’)

[ 1. sin(u’+p)d+ sin(u’–p) 1
— (8)

U+p of—p
P

f’
– P2

where An,

amplitudes

B;(p), D;(P), and Bj(p) are the normalized

of the even guided and continuous TE modes

in each regions. Their analytical expressions are still avail-

able in [3].

In order to test the validity of the solution of the

coupled integral equation system, (5) and (6), an addi-

tional integral equation between the unknown functions

can be derived from (l), namely

(l+ao)(l -at)= Z Ianlz +~m(14’(p)12

‘ P*(P)

“q’(p)’ ) IP(P)I ‘p’
n=2,4,. . . . (9)

This relation can be spiit into its real and its imaginary

parts. The former gives the law of power conservation at

the discontinuity

1– ~ la.12=~~0[lq’(p)12 +lqr(p)12] dp,
o

n=0,2,4,. ., (lo)

while the latter is the imaginary part of the a. reflection

coefficient which is expressed as

lm(aO)= ;~:[k’(P)12 +kr(P)12] dp. (11)

Equations (10) and (11) may be used to measure the

power coupled on the radiated modes and the energy

stored by the evanescent modes. Owing to the fact that

the modulus of the reflection coefficient is bounded

(Im(ao) < 1), the continuous wave amplitudes are neces-
– 112 as p+ co. By insertingsarily decreasing faster than p

the expression (8) of the function F(p’, p) into the q’(p)

and qr( p) integral equations (5) and (6), a singularity of

the Cauchy type appears in each kernel at p= p’. Ex-

pressing each kernel in a generalized form II(P’, p)/(p’ –

p) where the function II(p’, p ) is bounded everywhere, it

becomes obvious that considering the Cauchy principle

value of the integrals, or assuming that near p= p’

are identical conditions. Equation (12) means that near
p= p’ the bounded function q’(p). H(p’, p) is slowly vary-

ing compared to the rapid variation of the unbounded

quantity l/(p’ – p).

Using the Cauchy principle value of each integral, our

numerical results indicate that the unknown functions
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Fig. 2. Typical behavior of the coupling function q’(p)and ~(p)
verws the transverse wavenumber p (c, = 20, /c.= 0.628 rad/cm, d= 1

cm).

qt(p)and q’(p) exhibit weak singularities at p= ko. h
illustration of the behavior of qt(p ) versus the transverse

wavenumber p is given in Fig. 2. Such observations have

been already made by Rulf [17] who solved asymptotically

a similar problem for the case of a small discontinuity.

Although formally integrable, the singularity of q’(p) (or

q’(p)) can be described more accurately by changing
variable as in [7]. The change of variable consist to

include the modal characteristic impedance 2(p) in con-

tinuity relations (1) in order to write

,{0(,)=(::;;}.2(,), z(P)= o!.#fJ

where a = 1 for p <k. and, a =j for p > ko. The singularity

appears clearly in the expression of Z(p), whereas the

functions b(p) and d(p) are now bounded as shown in

Fig. 2.

A straightforward approach for solving the coupled

integral equation system is achieved by means of an

iterative procedure involving a series of approximations

on the scattering mechanism. A first-order solution [qt(p)] ~
is derived ‘by neglecting the reflected discrete and continu-

ous modes. We write

Then we substitute [q’(p)] ~ in the other integral equations

to calculate the first-order solutions for q’(p) and a.,

which we note as [q’(p)] ~ and [a. ],, respectively. Second-

order solutions [qt(p )]2, [q’(p)]’, and [a. ]2 are deduced

using the previous first-order values of the waves ampli-

tudes, and so on. This method is known as the Neuman

series of the system of coupled integral equation [19].

The iterative scheme is terminated when the modulus of

the difference between two successive orders of approxi-

mation for an (n= 0,2,4,. .- ) is lower than some specified

accuracy. At the last iteration, power conservation, (10), is

checked.

III. NUMErUCAL RESULTS

The numerical study has been carried out for both the

TE and TM cases. In the former case we consider incident

even modes TEO and TE2 while in the latter case the
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Fig. 3. Behavior of the reflection coefficient a. in the complex plane.
----- first-order approximation for a. versus /cod. —-— convergence
of a. versus the successive orders of approximation. — exact
solution for a. versus kod.

TABLE I

TEO case; c, =20 TMO case; c, =20

(6) (lo) (14) (A-13) (lo) (A-14)

kod aO la012 Iaolz I kod a. lao[2 lao12 1

0.209 0.547 +j.361 0.435 0.435 0.997 0.314 0.046 –j.159 0.027 0.026 0.999 -j.001
0.418 0.648 +j.315 0.519 0.520 0.997 0.418 0.655 –j.215 0.476 0.486 0.999
0.628 0.681 +j.244 0.523 0.524 0.997 0.628 0.763 –j.197 0.622 0.628 0.999 +j.001
0.837 0.696 +j.217 0.531 0.531 0.999 0.837 0.727 –j.209 0.572 0.580 0.998 +j.002
1.04 0.719 +j.168 0.545 0.544 0.999 1.04 0.669 –j.204 0.486 0.475 0.997 –j.001
1.25 0.724 +j.127 0.540 0.540 0.999 1.25 0.628 –.j.l9l 0.431 0.444 0.999

incident even modes TMO and TM2 are considered. The

wave amplitudes are plotted against the normalized

frequency kOd with the relative slab permittivity as a

parameter. High values for the perrnittivity are relevant

for microwave dielectric resonators.

First it is necessary to test the convergence of the

outlined method. The two reflection coefficients a. of the

even TEO and TMO incident mode versus the successive

orders of approximation are plotted in a complex-plane

representation in Fig. 3. In Fig. 3 are sketched for a. 1)

the exact results, 2) the initial first-order results, and 3) the

loci of successive orders of approximation of the iterative

procedure. In the TE case, the convergence is very fast

since four iterations only are needed for an accuracy

better than 10 ‘3. Convergence in the TM case is quite

different specially in the low-frequency region where it is

very slow. In this low-frequency region, the phase con-

stant of the discrete TM o guided mode Do reaches values
close to the free space wavenumber kO and a very strong

coupling with the reflected and transmitted continuous

waves occurs. As an example for kOd= 0.314 about 15

iterations are needed for obtaining exact results inside a

precision of 10 – 3. The TM convergence appears quite
similar to the TE convergence in the high-frequency re-

gion, and the first-order iterative solution is a good repre-
sentation of the exact reflection coefficient aO.

Accuracy of the computed results is illustrated by Table

I. The square of the modulus of the reflection coefficient

rzo for both the TEO and the TM ~ incident modes are

deduced either from the complex solution of the integral

equations (5) and (6) for the TE case, and (A-12) and

(A-13) for the TM case or directly from the power con-

servation integral equation (10). It can be noted that

within a given precision of 10 – 3 in the iterative scheme

which provides the value of aO, power conservation is

verified more accurately than 0.2 percent for the TE case

and 1 percent for the TM case. In addition to (2) and (3),

an other test on the accuracy of the value of the coupling

coefficient qt( p) in the TE case can be carried out from

the following relation:

which can be easily deduced from (1) using orthogonality.

Due to the similarity between (14) and (6), which gives ao,

it is expected that the accuracy of 0.3 percent observed on

the value of one (Table I) can be also used for the value of

a.. For the TM case, (A-14) takes place instead of (14).
Numerically, a similar behavior of the convergence and

accuracy has been found for the coupling coefficient az in

the range of variation of the normalized frequency which

does not exceed the “cutoff frequency” of the third dis-

crete mode in the slab when c, =20. In a first paper [9] we

have compared our results with those of Rozzi [7] for the

step discontinuity; the agreement between the two analy-

sis is quite good.

A second comparison with Ikegami’s results is shown in

Fig. 4. This figure presents the evolution of the power

reflection coefficient of the facet of dh laser cavity versus

the thickness of the active layer for two surrounding
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Fig. 4.

t43

o~
Thickness d(p)

Reflectivity of the TEO incident made at end facet of a dh laser
cavity versus the thickness of the active layer.
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I9 Phase (rad)
u“,

qf :-’.,
-[

r \“v ~‘\
\

‘K ‘ –-’- E,=30 k..

o~
.5 1. l.s
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7. Moduli of the reflection coefficient a. and of the coupling
coefficient az (incident TMO mode).
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Fig. 8. Phases of the reflection coefficient a. and of the coupling
coefficient az (incident TM ~ mode).

tion coefficient a. together with the coupling coefficient

az versus the normalized frequency kOd. Similar curves

now referring to TMO incident modes are plptted in Figs.

7 and 8. In Figs. 5 and 6 we note an irregularity in the

behavior of the modulus and the phase of the a. reflection

coefficient of the TEO incident mode as a function of kOd

which corresponds to the excitation of the TE2 reflected

mode in the slab waveguide. For the TMO incident mode,

this irregularity does not appear in the behavior of the

modulus of the reflection coefficient a. in Fig. 7 but it is

noticeable in the phase curve of Fig. 8.

As the normalized frequency increases, the reflection

coefficients a. with both TEO and TMO excitations be-

come virtually identical and their common value can be

closely approximated by the reflection coefficient of a

plane wave incoming from the higher index semi-infinite

medium. This limiting value expressed as

<–1

materials with different index. Our results agree quite well
a. = (15)

lz+l
with those of Ikegami [14].

,= r,.

Considering the even TEO mode incident in the semi- is drawn in Figs. 5 and 7 for all given values of the

infinite dielectric slab, Figs. 5 and 6 illustrate the varia- relative perrnittivity for the dielectric slab. Note also that

tions of the moduli and those of the phases of the reflec- the first-order approximations which agree with the exact
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r1. Modulus

Fig. 9. Moduti (——) and phases (----) of the reflection coefficient az
and of the coupling coefficient a. (incident TE2 mode, c,= 20).
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Fig. 10. Moduti (—) and phases (----) of the reflection coefficient az
and of the coupling coefficient a. (incident TM2 mode, c, =20).

results as the normalized frequency is arising, tend toward

the above limit value (15) of the reflection coefficient (see

Fig. 3).

We continue the comparison between the behavior of

the TEO and TMO excitation by noticing that the modulus

of the reflection coefficient of the latter remains quite

negligible in a large range of variation of low normalized

frequencies. This feature corresponds to an important

leakage of the energy by coupling with the radiative

continuous modes at the discontinuity. In the TE case, the

power coupled on the radiated modes decreases whereas

the stored energy increases (see (10) and (11) and Fig. 3).

This process is very fast after the cutoff frequency. Similar

effect are felt by the coupling coefficient an (n= 2,4,”. “ )

in the neighborhood of the “cutoff frequencies” of the

higher order slab modes.

In Figs. 9 and 10 we use higher order mode excitations

of the infinite dielectric slab, namely the even TE2 and the

TM2 modes. The wave amplitudes az are now the reflec-

tion coefficients while a. become the coupling coefficients

on the reflected fundamental modes. In contrast with the

previous fundamental excitations, the reflection coeffi-

cients U2 approach closely the unit value when the normal-

ized frequency increases,

In the TE case (Fig. 9) its behavior denotes a more

important coupling with the evanescent continuous modes

rather than with the radiated continuous modes at the

discontinuity. A similar behavior is met for the TEO mag-

netic dipole mode of the dielectric rod when it is confined

in a resonator. Indeed, closed-form expressions of its

resonant frequency can be obtained by assuming an en-

ergy storage in the neighborhood of the two interacting

discontinuities and small radiation losses [18]. In the TM

case the behavior is quite different since a strong coupling

with the radiated continuous modes occurs when kod

approaches the “cutoff frequency” of the TM ~ incident

mode and Fig. 10 shows that this leakage of energy is felt

in a large range of variation of the normalized frequency.

Note lastly the efficient excitations of the reflected funda-

mental modes at the discontinuity in Figs. 9 and 10.

IV. CONCLUSION

In conclusion, a new rigorous analysis of transverse

discontinuities in a dielectric slab waveguide has been

outlined on the abruptly ended configuration. The key

point is the derivation of coupled integral equations on

discrete and continuous waves amplitudes of the modal

fields at the discontinuity. These coupled integral equa-

tions are solved by an iterative procedure namely the

Neuman series.

Numerical examples involving various even TE and TM

excitations are reported. For more practical structures

such as dielectric rods, the analytical description of the

discrete and continuous modes spectra differs but the

concepts involved remain the same. The rigorous formula-

tion of the resonances of a dielectric cylindrical resonator

deserves further attention.

APPENDIX

ODD TM EXCITATIONS IN AN ABRUPTLY ENDED

SLAB WAVEGUIDE

The continuity relation between transverse fields at the

interface z = O is quite similar to (1) after a simple inter-

changing of the subscripts x and y in fields quantities.

The discrete and the continuous transverse modal fields

must be necessary modified as it follows. So, for discrete

odd TM slab mode in region I, we obtain

(Ancos Kn.x, Ixl<d
H=

x,n

I
Ane YndcosKnde ‘Ynlxl, Ixl>d

E
t% ~

y.n=
kEoEr(.X) “n

{

Ixl<d
c,(x)= 6“’

1, Ixj>d”

(A-1)

(A-2)

The transverse wavenumbers K. and y. are now con-

nected by the characteristic equation



GELIN et d.: SCATTERING OF SURFACE WAVSS 113

and from the power flow normalization we derived the

value of the constant A that is

The continuous odd TM slab modes in region I are

expressed as

I
B:(p) Cos ax,

H,(p) =
Ix[<d

B:(p) [D:(p) e-iplxl +D~*(p)eiplX1],

EX(p)= –
B(P)

HY(p)
6XOC,(X)

where

[ 1D;(P)= ~ cosod– ~ ~ shod eipd
r

i

26 XOPE,
X(P)=P

II\/? (p)l(e~p2cos2 ud+u2sin2ud) ‘

(A-5)

(A-6)

(A-7)

while in region II that is the free space their expressions

are
HY(p)=B:(p)cospx

EX(p)=~B:(p)cospx
Uco

with

(A-8)

{

26)coP

‘:(p)= l-fl~(p)l “
(A-9)

Let v.(p) and K.(p) the functions, such that

~ H;, ~H;*(p)
L(P)=J dx, n=0,2,4,. . .

o e,(x)

(A-1O)

%(P)= ~mH;, rZH;*(P) dx> n=0,2,4,. . . .

(A-11)

Then the system coupled integral equations connecting

the waves amplitudes q,(p), q’(p), and a. that take the

place of (2) and (3) are

flP
4’(P)=* z’o(p)po+~o(P)Bt~)

{
2P0-J’0(P).%JP)

+~mdp’~w~r(P’)[ Bo.o(P)H;(p’)

1qKP’)q*(P) dx
‘~;”(p) ‘~(fi)Ko(fl) .

E,(X)

}
+ ~ [Be.Kn(P).Vo(P)–8n.~n(P).~o(P)]~n,

n=2,4,. . . (A-12)

{1-A
{}

an 1 IB(P)I.—
9’(P) 4UCOP p

{1P(;)

.
/ 1‘dp’.q’(p’) ~(p).

o

HUH;*

:,(x)
I

fL(P)

{

_ P(P) H;(p) H;*(p)dx

-P. }]J’n(P) ‘

n=0,2,4,. . . (A-13)

we can also obtained the following integral equation:

1= &~mq’(p)@(p)~o(p)+Bo~o(p))dp

(A-14)

which appears as useful for test on accuracy in the com-

putational scheme as (14). The power conservation equa-

tion of the TM excitations is the same that (10).
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An Analysis of Log Periodic Antenna
with Printed Dipoles

ALAKANANDA PAUL, hff3MB~lt, IEEE, AND INDERJEET GUPTA

Abstruet-.4n amdysfs of Log Periodic Antenna with Printed DIpoks fs

presented here. In this anaiys~ the wave equation for Hertz potential fs

solved in Cmtesbrn caorrffnata applying the boundary comfftiorrs of a flat

strip dfpole. Using thfs mode~ the fnput currents to the antenna elemen@

the current distribution of the antenna elemen~ and the radiation pattern

are cnmputed. The computed rcsufta are compared with experimental

results.

I. INTRODUCTION

I N RECENT years frequency independent antennas [1]

have gained significant importance. The Log Periodic

Dipole Array (LPDA) is an important type of frequency

independent antenna and was invented by Isbell [2] at the

University of Illinois in 1958.

Several theories based on the transmission line ap-

proach have been put forth for the analysis of LPDA [3],

[4], [5]. Welter [6] derived a theory of Log Periodic Dipole

Antenna as a solution of the antenna boundary value

problem. He calculated the current distribution on an-

tenna elements by solving the wave equation for Hertz

potential in cylindrical coordinates, satisfying the ap-

propriate boundary conditions.

At microwave frequencies, wire dipoles may be bent

due to rough handling causing asymmetries in the struc-

ture, which, in turn result in back radiation and side lobes

[7]. Therefore, it is better to replace the wire antenna by
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printed dipole which is more rugged and can be easily

fabricated.

In this paper, a mathematical model for the analysis of

LP array using printed dipole is developed following

Welter’s method [6]. However, in this case, the wave

equation for Hertz potential is solved in rectangular coor-

dinates satisfying the boundary conditions of a flat strip

dipole.

II. ANALYSIS

The antenna consists of N parallel flat strip dipoles. The

antenna lies in the x–y plane of the rectangular coordinate

system as shown in Fig. 1. The details of the n th element

are shown in Fig. 2 and the dimensions of the test array

are given in Table I. The elements are fed by a symmetri-

cal transmission line with the characteristic impedance Zo.

The two conductors of the transmission line are separated

by a dielectric sheet of thickness t. An extra phase shift of

180° is introduced by switching the connection of the

adjacent elements.

In the following analysis the dipole elements are as-

sumed infinitely thin and perfectly conducting for the

sake of simplicity. If t is infinitesimally small, the two

strips of elements can be considered to be at z = O. Taking

the time variation as exp (jot) the wave equation for

Hertzian vector will reduce to

Awn + K;wn = O (1)

where KO is the wavenumber in free space. m. will have

only y component due to the choice of coordinate system.

Since each element is symmetrical in x, y, and z about its
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