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Rigorous Analysis of the Scattering of Surface
Waves in an Abruptly Ended
Slab Dielectric Waveguide

PHILIPPE GELIN, MICHEL PETENZI, anp JACQUES CITERNE

Abstract—The reflection and the scattering properties of even TE and
TM surface waves incident in an abruptly ended dielectric slab waveguide
are analyzed. The discontinuity is regarded as a junction between two open
waveguides namely the dielectric slab waveguide and the free space
waveguide. The boundary conditions acting together with the orthogonality
provide singular coupled integral equations on the discrete and the con-
tinuous wave amplitudes at the discontinuity. These singular coupled
integral equations with Cauchy kernels and infinite limits of integration
are solved by iteration via the Neuman series. Numerical results are
presented for the reflectivity of the even TE, and TM, fundamental
modes, together with their mode conversion on even TE, and TM, in a
slab where two guided modes can propagate. Reflectivity and mode conver-
sion of higher order excitations are also investigated,

I. INTRODUCTION

HE DIFFICULTY of the studies relating to open

waveguide discontinuities led many authors to con-
centrate on rather elementary problems of dielectric slab
waveguide. Such problems are idealization of more realis-
tic situations that occur at a transverse discontinuity in a
planar waveguide in centimeter, millimeter, or optical
circuitry design.

We would have wished here to formulate rigorously the
resonant conditions of confined modes inside a lossless
dielectric resonator [1], however, owing to the complexity
of this problem which remains unsolved up to date, to our
knowledge, we shall consider in the present paper trans-
verse discontinuities in' dielectric slabs, rather than in
circular dielectric rods.

The methods outlined in pioneer works on abrupt junc-
tions between one surface waves guiding structure to
another are, in essence, similar to those used for junctions
between more conventional closed waveguides [2]. They
are to be adapted to treat open structures where the
complete set of eigenmodes includes both discrete and
continuous waves. ’

Most of the theoretical analyses reported previously
were restricted to small discontinuities. Under that basic
assumption, either the backward radiated waves can be
neglected as in [3] or the continuum keeps the same
description on both sides of the discontinuity as in [4].
The problem of arbitrarily large steps under monomode
or multimode excitations has been also investigated
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Fig. 1. Abruptly ended dielectric slab waveguide configuration.

by several authors. For computational convenience,
Mahmoud and Beal [5] transformed the continuous de-
scription of the radiation modes in a discrete one by
expanding the coupling functions in terms of a complete
set of normalized Laguerre polynomials on the range of
the continuous transverse wavenumber. Very recently, two
variational approaches have been applied successfully.
Using the aforementioned discrete description of the con-
tinuum, Morishita ez al. [6] defined the mean square error
of the transverse fields components at the discontinuity as
a functional and solved the stationary associated boundary
value problem. Rozzi [7] solved the integral equation
given in [8] on the transverse fields components at the
discontinuity interface via the Ritz—Galerkin method; the
normalized Laguerre polynomials are still used but for
discretizing the modal fields components in each slab
waveguide cross section.

This paper deals with an other rigorous approach of the
surface wave scattering at a transverse discontinuity in a
lossless dielectric slab waveguide. It consists of deriving
coupled singular integral equations on discrete and con-
tinuous wave amplitudes interfering in the total electro-
magnetic fields which are matched at the discontinuity
interface. This system of singular integral equations, where
the integrals are taken in the sense of the Cauchy prin-
cipal values, is solved by interation using the standard
Neuman series which are found rapidly converging.

The method has already been succinctly described
elsewhere for arbitrarily large steps [9] but without com-
putational details. In the present paper, we are going to
discuss an open-type discontinuity problem of great inter-
est in resonator design, i.e., the diffraction and the reflec-
tion of surface waves at abruptly ended slab dielectric
waveguide (Fig. 1).

Such a problem is also of great importance in other area
of activity such as in solid-state heterojunction laser de-
vices [10] and in millimeter wave antenna applications
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[11]. For a laser cavity, the reflection and the diffraction
of surface waves at the end facet are crucial parameters
for determining both its oscillation condition and its out-
put coupling radiation in free space. For dielectric slab
antennas, the usual parameters are the terminal imped-
ance and the near as well as far scattered fields.

The problem we discuss in this paper has thus already
been investigated in the aforementioned areas by several
authors who proposed numerical results under reasonable
approximations. Most of them used the transverse integral
equation method associated with a final variational for-
mulation on quantities which have a stationary property.
These quantities are the terminal and transfert imped-
ances in [12] and [13] whereas in [14] and in [15] they are
the reflection coefficients. This paper can be considered as
extension of Rozzi works recently published [16].

The technique we are going to describe gives an exact
solution of this basic problem and the computational
effort required is minimum. For brevity’s sake, it will be
restricted to even TE excitations. The TM excitations is
briefly treated in Appendix.

II. ANALYSIS OF THE ABRUPTLY ENDED SLAB
DISCONTINUITY

A. Formulation of the Problem

On the left-hand side of the interface discontinuity
z=0, the discrete and the continuous parts of the spec-
trum of the slab dielectric waveguide are derived using
Marcuse notations [3]. On the right-hand side of the
interface z=0, the spectrum is only continuous; its de-
scription is deduced from the slab continuous spectrum by
taking the limit of either a zero thickness (d—0) or a unit
permittivity (e,—1). For simplicity only the even TE
waves with transverse fields E, and H, are considered.
Continuity of these transverse fields at the interface z=0
is expressed as

El o B\ o[ Ele)
{H;,o}@“"{ﬂ;,n}% "(”){pr)}d

=f°°q,(p){Ey(p)}dp’ n=0,2’4,‘ . (1)
0 H(p)

The field on the left-hand side of (1) is a superposition
of the even incident TE, mode (superscript i), of the
reflected even discrete TE, (n=0,2,4,---) and of the
reflected even continuous TE modes (superscript 7). The
constants a, (n=0,2,4,---) are the amplitudes of the
reflected discrete modes, while the coefficients ¢"(p) rep-
resent the amplitudes of the reflected continuous modes.
The forward scattered field on the right-hand side of (1) is
a superposition of the transmitted even TE continuous
modes with the amplitudes ¢’(p). In the following, we
denote by 8, (n=0,2,4,---) and B(p) the phase constant
of the even discrete TE, modes and of the even continu-
ous TE modes, respectively; lastly, p denotes the trans-
verse wavenumber of the slab continuous modes outside
the dielectric medium.

By using orthogonality and by operating elementary

substitutions, we can take out from (1), the amplitudes
q‘(p), a, and g’(p), the expressions of which are
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where P is the real power flow in the positive z direction
(per unit length of y) for any discrete propagating mode.
The continuous modes, which can be either propagating
or evanescent have their complex power flow % related to

P by the following formula:
g=F) p @)

|B(p)

Equations (2) and (3) are the coupled integral equations
that relate the unknown functions ¢‘(p), a,, and ¢’(p).
These equations have to be solved for treating rigorously
the abruptly ended dielectric slab discontinuity problem.
Beside the unknown functions ¢‘(p), a,, and g'(p), all
other quantities in (2) and (3) are known since they refer

to the slab and to the free space TE modal fields.

B. Closed Form of the Coupled Integral Equations

Using the analytical expressions of slab and free space
TE modal fields components (see [3]), we can give below
the closed form of the coupled integral (2) and (3)
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where
G,(p)=2kd(e,—1)-4,-Bl(p)cos K,d
_ (v,c08 pd—psin pd)

(kF=+e)
F(p', p)=T1B(p)BI(0")| DI(p")+D"(¢")] 8(p—p")
—k&(e, —1)Bi(p)B.(p)
sin(o’+p)d + sin(e'—p) 1 ®)

a+p o'—p " —p?
where 4,, B!(p), D[(p), and B(p) are the normalized
amplitudes of the even guided and continuous TE modes
in each regions. Their analytical expressions are still avail-
able in [3].

In order to test the validity of the solution of the
coupled integral equation system, (5) and (6), an addi-
tional integral equation between the unknown functions
can be derived from (1), namely

(1+a0)(1-a8)=Zla, I+ [~ (1a(p)2

B* (p)
+Ha (P < n=2,4,---. (9)
B ™ _
This relation can be split into its real and its imaginary
parts. The former gives the law of power conservation at
the discontinuity

- 2|an|2=f0"°[|q'(p)|2+|q’(p)|2]dp,
n=0,2,4,--- (10)

while the latter is the imaginary part of the a, reflection
coefficient which is expressed as
[}
m(a0)=5 [ (1) +l2'(0)]dp. (1)
ko

Equations (10) and (11) may be used to measure the
power coupled on the radiated modes and the energy
stored by the evanescent modes. Owing to the fact that
the modulus of the reflection coefficient is bounded
(Im(ay)< 1), the continuous wave amplitudes are neces-
sarily decreasing faster than p~1/2 as p—>oo. By inserting
the expression (8) of the function F(p', p) into the g‘(p)
and ¢'(p) integral equations (5) and (6), a singularity of
the Cauchy type appears in each kernel at p=p’. Ex-
pressing each kernel in a generalized form H(p’, p)/(p’—
p) where the function H(p’, p) is bounded everywhere, it
becomes obvious that considering the Cauchy principle
value of the integrals, or assuming that near p=p’

hmf (p p)

are identical conditions. Equation (12) means that near
p=p’ the bounded function ¢*(p)-H(p’, p) is slowly vary-
ing compared to the rapid variation of the unbounded
quantity 1/(p’—p).

Using the Cauchy principle value of each integral, our
numerical results indicate that the unknown functions

——=dp’=0 (12)
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Fig, 2. Typical behavior of the coupling function ¢ ‘(p) and d( 0)
versus the transverse wavenumber p (€, =20, k, =0.628 rad /cm, d=1
cm).

q'(p) and ¢’(p) exhibit weak singularities at p=k,. An
illustration of the behavior of g'(p) versus the transverse
wavenumber p is given in Fig. 2. Such observations have
been already made by Rulf [17] who solved asymptotically
a similar problem for the case of a small discontinuity.
Although formally integrable, the singularity of g’(p) (or
q"(p)) can be described more accurately by changing
variable as in [7]. The change of variable consist to
include the modal characteristic impedance Z(p) in con-
tinuity relations (1) in order to write

" _] () Wio
o) '{d(p) BCo)]

where a=1 for p <k, and, a=j for p > k. The singularity
appears clearly in the expression of Z(p), whereas the
functions b(p) and d(p) are now bounded as shown in
Fig. 2.

A straightforward approach for solving the coupled
integral equation system is achieved by means of an
iterative procedure involving a series of approximations
on the scattering mechanism. A first-order solution [¢*(p)];
is derived by neglecting the reflected discrete and continu-
ous modes. We write

[4'(p)], =

}'Z(p), Z(p)=a:

1 |B(e)l
20p0P [ By +8(p)]

Then we substitute [¢’(p)], in the other integral equations
to calculate the first-order solutions for ¢’(p) and a,,
which we note as [¢'(p)], and [a,];, respectively. Second-
order solutions [¢°(p)],, [¢"(p)];, and [a,], are deduced
using the previous first-order values of the waves ampli-
tudes, and so on. This method is known as the Neuman
series of the system of coupled integral equation [19].

The iterative scheme is terminated when the modulus of
the difference between two successive orders of approxi-
mation for a, (n=0,2,4,- - -) is lower than some specified
accuracy. At the last iteration, power conservation, (10), is
checked.

2By Go(p). (13)

ITI. NUMERICAL RESULTS

The numerical study has been carried out for both the
TE and TM cases. In the former case we consider incident
even modes TE, and TE, while in the latter case the
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TM, mode

Fig. 3. Behavior of the reflection coefficient ay in the complex plane.
----- first-order approximation for a, versus kyd. —-— convergence

of ay versus the successive orders of approximation.

solution for a, versus kyd.

exact

TABLE I
TE case; €, =20 TM, case; €, =20
®) 1oy a4 (A-13) (10 (A-14)
kod g |‘10|2 lao|2 1 kod ag |lao|? |a0|2 1
0.209 0.547+;.361 0435 0435 0997 0314 0.046—;.159 0.027 0.026 0.999-;.001
0.418  0.648+;.315 0.519 0.520 0.997 0.418 0.655—7.215 0476 0.486 0.999
0.628 0.681+;.244 0.523 0.524 0.997 0.628 0.763—;.197 0.622 0.628 0.999+;.001
0.837 0.696+,.217 0531 0.531 0.999 0.837 0.727—;.209 0.572 0.580 0.998+,.002
1.04 0.719+;.168 0.545 0.544 0.999 1.04 0.669—;.204 0486 0475 0.997—;.001
125 0.724+;.127 0.540 0540 0.999 1.25 0.628—;.191 0431 0444 0.999

incident even modes TM, and TM, are considered. The
wave amplitudes are plotted against the normalized
frequency k,d with the relative slab permittivity as a
parameter. High values for the permittivity are relevant
for microwave dielectric resonators.

First it is necessary to test the convergence of the
outlined method. The two reflection coefficients a, of the
even TE, and TM, incident mode versus the successive
orders of approximation are plotted in a complex-plane
* representation in Fig. 3. In Fig. 3 are sketched for a, 1)
the exact results, 2) the initial first-order results, and 3) the
loci of successive orders of approximation of the iterative
procedure. In the TE case, the convergence is very fast
since four iterations only are needed for an accuracy
better than 10 3. Convergence in the TM case is quite
different specially in the low-frequency region where it is
very slow. In this low-frequency region, the phase con-
stant of the discrete TM, guided mode B, reaches values
close to the free space wavenumber k, and a very strong
coupling with the reflected and transmitted continuous
waves occurs. As an example for ky,d=0.314 about 15
iterations are needed for obtaining exact results inside a
precision of 1072 The TM convergence appears quite
similar to the TE convergence in the high-frequency re-
gion, and the first-order iterative solution is a good repre-
sentation of the exact reflection coefficient a,.

Accuracy of the computed results is illustrated by Table
I. The square of the modulus of the reflection coefficient
a, for both the TE; and the TM, incident modes are
deduced either from the complex solution of the integral

equations (5) and (6) for the TE case, and (A-12) and
(A-13) for the TM case or directly from the power con-
servation integral equation (10). It can be noted that
within a given precision of 1073 in the iterative scheme
which provides the value of a,, power conservation is
verified more accurately than 0.2 percent for the TE case
and 1 percent for the TM case. In addition to (2) and (3),
an other test on the accuracy of the value of the coupling
coefficient ¢’(p) in the TE case can be carried out from
the following relation:

4wf1LoPfowqt(f’)‘(ﬁo+B(p))'Go(p)dp (14)

which can be easily deduced from (1) using orthogonality.
Due to the similarity between (14) and (6), which gives a,,
it is expected that the accuracy of 0.3 percent observed on
the value of one (Table I) can be also used for the value of
a,. For the TM case, (A-14) takes place instead of (14).
Numerically, a similar behavior of the convergence and
accuracy has been found for the coupling coefficient a, in
the range of variation of the normalized frequency which
does not exceed the “cutoff frequency” of the third dis-
crete mode in the slab when €, =20. In a first paper [9] we
have compared our results with those of Rozzi [7] for the
step discontinuity; the agreement between the two analy-
sis is quite good.

A second comparison with Tkegami’s results is shown in
Fig. 4. This figure presents the evolution of the power
reflection coefficient of the facet of dh laser cavity versus
the thickness of the active layer for two surrounding
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materials with different index. Our results agree quite well
with those of Ikegami [14].

Considering the even TE, mode incident in the semi-
infinite dielectric slab, Figs. 5 and 6 illustrate the varia-
tions of the moduli and those of the phases of the reflec-
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Fig. 7. Moduli of the reflection coefficient a, and of the coupling

coefficient a, (incident TMy mode).
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Phases of the reflection coefficient @, and of the coupling
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Fig. 8.

tion coefficient a, together with the coupling coefficient
a, versus the normalized frequency kyd. Similar curves
now referring to TM,, incident modes are plotted in Figs.
7 and 8. In Figs. 5 and 6 we note an irregularity in the
behavior of the modulus and the phase of the a reflection
coefficient of the TE, incident mode as a function of kyd
which corresponds to the excitation of the TE, reflected
mode in the slab waveguide. For the TM,, incident mode,
this irregularity does not appear in the behavior of the
modulus of the reflection coefficient a, in Fig. 7 but it is
noticeable in the phase curve of Fig. 8.

As the normalized frequency increases, the reflection
coefficients a, with both TE, and TM, excitations be-
come virtually identical and their common value can be
closely approximated by the reflection coefficient of a
plane wave incoming from the higher index semi-infinite
mediuvm. This limiting value expressed as

a0=_\/_€_’___l (15)
Ve, +1

is drawn in Figs. 5 and 7 for all given values of the
relative permittivity for the dielectric slab. Note also that
the first-order approximations which agree with the exact
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Fig. 9. Moduli (——) and phases (----) of the reflection coefficient a,
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Fig. 10. Moduli ( ) and phases (--—--) of the reflection coefficient a,
and of the coupling coefficient a4 (incident TM, mode, €, =20).

results as the normalized frequency is arising, tend toward
the above limit value (15) of the reflection coefficient (see
Fig. 3).

We continue the comparison between the behavior of
the TE, and TM,, excitation by noticing that the modulus
of the reflection coefficient of the latter remains quite
negligible in a large range of variation of low normalized
frequencies. This feature corresponds to an important
leakage of the energy by coupling with the radiative
continuous modes at the discontinuity. In the TE case, the
power coupled on the radiated modes decreases whereas
the stored energy increases (see (10) and (11) and Fig. 3).
This process is very fast after the cutoff frequency. Similar
effect are felt by the coupling coefficient a, (n=2,4,---)
in the neighborhood of the “cutoff frequencies” of the
higher order slab modes.

In Figs. 9 and 10 we use higher order mode excitations
of the infinite dielectric slab, namely the even TE, and the
TM, modes. The wave amplitudes a, are now the reflec-
tion coefficients while a, become the coupling coefficients
on the reflected fundamental modes. In contrast with the

previous fundamental excitations, the reflection coeffi-
cients a, approach closely the unit value when the normal-
ized frequency increases.

In the TE case (Fig. 9) its behavior denotes a more
important coupling with the evanescent continuous modes
rather than with the radiated continuous modes at the
discontinuity. A similar behavior is met for the TE; mag-
netic dipole mode of the dielectric rod when it is confined
in a resonator. Indeed, closed-form expressions of its
resonant frequency can be obtained by assuming an en-
ergy storage in the neighborhood of the two interacting
discontinuities and small radiation losses [18]. In the TM
case the behavior is quite different since a strong coupling
with the radiated continuous modes occurs when kyd

_approaches the “cutoff frequency” of the TM, incident

mode and Fig. 10 shows that this leakage of energy is felt
in a large range of variation of the normalized frequency.
Note lastly the efficient excitations of the reflected funda-
mental modes at the discontinuity in Figs. 9 and 10.

IV. CoNCLUSION

In conclusion, a new rigorous analysis of transverse
discontinuities in a dielectric slab waveguide has been
outlined on the abruptly ended configuration. The key
point is the derivation of coupled integral equations on
discrete and continuous waves amplitudes of the modal
fields at the discontinuity. These coupled integral equa-
tions are solved by an iterative procedure namely the
Neuman series. ’

Numerical examples involving various even TE and TM
excitations are reported. For more practical structures
such as dielectric rods, the analytical description of the
discrete and continuous modes spectra differs but the
concepts involved remain the same. The rigorous formula-
tion of the resonances of a dielectric cylindrical resonator
deserves further attention.

APPENDIX

OpD TM EXCITATIONS IN AN ABRUPTLY ENDED
SLAB WAVEGUIDE

The continuity relation between transverse fields at the
interface z=0 is quite similar to (1) after a simple inter-
changing of the subscripts x and y in fields quantities.

The discrete and the continuous transverse modal fields
must be necessary modified as it follows. So, for discrete
odd TM slab mode in region I, we obtain

A,cos K, x, |x|<d
| A,e"9cos K, de ~vI*, |x|>d
B,
E,  =—1tr A-1
y.n weoe,(x) x,n ( )
€, |xl<d
e,(x)={ ) x|>d° (A-2)

The transverse wavenumbers K, and y, are now con-
nected by the characteristic equation

K, tan K, d=¢,y, (A-3)
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and from the power flow normalization we derived the
value of the constant 4 that is

20e0P-y, ¢, (€, 7, +5;)
A= 2 2 2
Bn[w H0€0€,+Ynd’(€,}’n +'Bn )]

The continuous odd TM slab modes in region I are
expressed as

(A-4)

B!(p)cosax,
|x|<d
H = . . .
A0V Bi(o) [ D2(p)e 1+ D7 (p)e],
|x|>d
E(0)=-—LE)_g(p) (a5)
wege,(x)
where
(o)=L _io ipd A-6
D(p)=> [cosod < b s1nod]e (A-6)
B(p) 2weyPe,
PPN T B(p) (2 cos? od+ o sint od ) -
(A7)
while in region II that is the free space their expressions
are
H (p)=B,(p)cospx
E(0)= L2 pi(p) cospx (A8)
wE
with
2wey P
BJ(p)= V———-—o : (A-9)
IT| B(p)I
Let 2,(p) and «,(p) the functions, such that
w H; ,H}'(p)
= P Y gk, =0,2,4, -
nie)= [ e
(A-10)
b i *
K,,(p)=f H! H'(p)dx, n=0,2,4,--.
/0
(A-11)

Then the system coupled integral equations connecting
the waves amplitudes ¢,(p), ¢"(p), and a, that take the
place of (2) and (3) are

1 Bp
weoP vy(p)By +xo(p)B(p)

q'(p)= {ZBO'VO(P)"‘O(P)

+f0°°dp’fowq’(p’)[ﬂo'vo(p)'Hy'(P')

Hr ’ Ht’
“H(p)—B(p")ko(p) -y(—p)—yﬂ} dx

€(x)
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o L)
iol-ar 2

B(p)

H}(0)H] (p)
€(x) ’
K,(p)

'fowdp"q’(p’) B(p):

_ { B(p)

H)(p)H]"(p) dx }
-8, ’

7,(p)

n=0,2,4,--- (A-13)

we can also obtained the following integral equation:
1 0
5 | 4'(0)-(B(p)-xo(p)+Bowol))-db
ol Jo

4op
(A-14)

which appears as useful for test on accuracy in the com-
putational scheme as (14). The power conservation equa-
tion of the TM excitations is the same that (10).
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An Analysis of Log Periodic Antenna
with Printed Dipoles

ALAKANANDA PAUL, MEMBER, IEEE, AND INDERJEET GUPTA

Abstract— An analysis of Log Periodic Antenna with Printed Dipoles is
presented here. In this analysis, the wave equation for Hertz potential is
solved in Cartesian coordinates applying the boundary conditions of a flat
strip dipole. Using this model, the input currents to the antenna elements,
the current distribution of the antenna elements, and the radiation pattern
are computed. The computed results are compared with experimental
results.

I. INTRODUCTION

N RECENT years frequency independent antennas [1]

have gained significant importance. The Log Periodic
Dipole Array (LPDA) is an important type of frequency
independent antenna and was invented by Isbell [2] at the
University of Illinois in 1958.

Several theories based on the transmission line ap-
proach have been put forth for the analysis of LPDA [3],
[4], [5]. Wolter [6] derived a theory of Log Periodic Dipole
Antenna as a solution of the antenna boundary value
problem. He calculated the current distribution on an-
tenna elements by solving the wave equation for Hertz
potential in cylindrical coordinates, satisfying the ap-
propriate boundary conditions.

At microwave frequencies, wire dipoles may be bent
due to rough handling causing asymmetries in the struc-
ture, which, in turn result in back radiation and side lobes
[7]. Therefore, it is better to replace the wire antenna by
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printed dipole which is more rugged and can be easily
fabricated.

In this paper, a mathematical model for the analysis of
LP array using printed dipole is developed following
Wolter’s method [6]. However, in this case, the wave
equation for Hertz potential is solved in rectangular coor-
dinates satisfying the boundary conditions of a flat strip
dipole.

II. ANALYSIS

The antenna consists of N parallel flat strip dipoles. The
antenna lies in the x—y plane of the rectangular coordinate
system as shown in Fig. 1. The details of the nth element
are shown in Fig. 2 and the dimensions of the test array
are given in Table I. The elements are fed by a symmetri-
cal transmission line with the characteristic impedance z,,.
The two conductors of the transmission line are separated
by a dielectric sheet of thickness 7. An extra phase shift of
180° is introduced by switching the connection of the
adjacent elements.

In the following analysis the dipole elements are as-
sumed infinitely thin and perfectly conducting for the
sake of simplicity. If ¢ is infinitesimally small, the two
strips of elements can be considered to be at z=0. Taking
the time variation as exp(jwt) the wave equation for
Hertzian vector will reduce to

Am, +K2m, =0 1))

where K, is the wavenumber in free space. m, will have
only y component due to the choice of coordinate system.
Since each element is symmetrical in x, y, and z about its
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